Trả lời bởi giáo viên
Ta thấy dãy số \(\left( {{a_n}} \right)\) dãy đan dấu nên không tăng cũng không giảm.
Với dãy \(\left( {{b_n}} \right)\), ta có ${b_n} = {5^n} + 1,\,\,\forall n \in N^*$, vì ${\left( { - 1} \right)^{2n}} = 1$. Vì \({b_{n + 1}} = {5^{n + 1}} + 1 = {5.5^n} + 1 > {b_n} \Rightarrow \left( {{b_n}} \right)\) là dãy số tăng.
Với dãy số \(\left( {{c_n}} \right)\) ta có ${c_{n + 1}} = \dfrac{1}{{n + 1 + \sqrt {n + 2} }} < \dfrac{1}{{n + \sqrt {n + 1} }} = {c_n} \Rightarrow \left( {{c_n}} \right)$là dãy số giảm.
Với dãy số \(\left( {{d_n}} \right)\) ta có \({d_{n + 1}} = \dfrac{{n + 1}}{{{{\left( {n + 1} \right)}^2} + 1}} = \dfrac{{n + 1}}{{{n^2} + 2n + 2}}.\)
Xét hiệu \({d_{n + 1}} - {d_n} = \dfrac{{n + 1}}{{{n^2} + 2n + 2}} - \dfrac{n}{{{n^2} + 1}} = \dfrac{{{n^3} + {n^2} + n + 1 - {n^3} - 2{n^2} - 2n}}{{\left( {{n^2} + 2n + 2} \right)\left( {{n^2} + 1} \right)}} = \dfrac{{ - {n^2} - n + 1}}{{\left( {{n^2} + 2n + 2} \right)\left( {{n^2} + 1} \right)}} < 0\,\,\forall n \in N^*\)
Vậy \(\left( {{d_n}} \right)\) là dãy giảm.
Hướng dẫn giải:
Suy ra trực tiếp từ các đáp án bằng cách xét hiệu \({x_{n + 1}} - {x_n}\) .