Câu hỏi:
1 năm trước
Tính diện tích hình chữ nhật có tỉ số giữa hai cạnh của nó là \(\dfrac{2}{3}\) và chu vi bằng \(40m\).
Trả lời bởi giáo viên
Đáp án đúng: d
Nửa chu vi hình chữ nhật là \(40:2 = 20\,m\)
Gọi hai cạnh của hình chữ nhật là \(x;y\left( {0 < x < y} \right)\)
Ta có \(\dfrac{x}{y} = \dfrac{2}{3} \Rightarrow \dfrac{x}{2} = \dfrac{y}{3}\) và \(x + y = 20\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{{x + y}}{{2 + 3}} = \dfrac{{20}}{5} = 4\)
Do đó \(x = 4.2 = 8\) và \(y = 3.4 = 12\)
Diện tích hình chữ nhật là \(8.12 = 96\,\left( {{m^2}} \right)\)
Hướng dẫn giải:
+ Gọi hai cạnh của hình chữ nhật là \(x;y\left( {0 < x < y} \right)\)
+ Suy ra tỉ lệ thức \(\dfrac{x}{y} = \dfrac{2}{3}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau để giải bài toán.