Tìm tất cả các giá trị của tham số \(m\) để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \({x^3} - 7{x^2} + 2\left( {{m^2} + 6m} \right)x - 8 = 0.\)
Trả lời bởi giáo viên
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt \({x_1},{x_2},{x_3}\) lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có \({x_1}{x_2}{x_3} = 8.\)
Theo tính chất của cấp số nhân, ta có \({x_1}{x_3} = x_2^2\). Suy ra ta có \(x_2^3 = 8 \Leftrightarrow {x_2} = 2.\)
+ Điều kiện đủ: Với \(m = 1\) và \(m = 7\) thì \({m^2} + 6m = 7\) nên ta có phương trình
\({x^3} - 7{x^2} + 14x - 8 = 0.\)
Giải phương trình này, ta được các nghiệm là \(1,2,4.\) Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị \(q = 2.\)
Vậy, \(m = 1\) và \(m = - 7\) là các giá trị cần tìm. Do đó phương án \(D.\)
Hướng dẫn giải:
- Sử dụng Vi – et cho phương trình bậc ba \({x_1}{x_2}{x_3} = - \dfrac{d}{a}\) và tính chất CSN tìm nghiệm ở giữa.
- Thay nghiệm này vào phương trình tìm \(m\) và thử lại.