Câu hỏi:
2 năm trước
Tìm tất cả các giá trị của tham số \(m\) để khoảng cách từ điểm \(A\left( { - 1;2} \right)\) đến đường thẳng \(\Delta :mx + y - m + 4 = 0\) bằng \(2\sqrt 5 \).
Trả lời bởi giáo viên
Đáp án đúng: b
$d\left( {A;\Delta } \right) = \dfrac{{\left| { - m + 2 - m + 4} \right|}}{{\sqrt {{m^2} + 1} }} = 2\sqrt 5 $ $ \Leftrightarrow \left| {m - 3} \right| = \sqrt 5 .\sqrt {{m^2} + 1} $ $ \Leftrightarrow 4{m^2} + 6m - 4 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}m = - 2\\m = \dfrac{1}{2}\end{array} \right..$
Hướng dẫn giải:
Sử dụng công thức tính khoảng cách từ một điểm đến đường thẳng:
\(d\left( {M,\Delta } \right) = \,\dfrac{{\left| {\left. {a{x_0} + b{y_0} + c} \right|} \right.}}{{\sqrt {{a^2} + {b^2}} }}.\)