Câu hỏi:
1 năm trước

Tìm một số chẵn có ba chữ số (có chữ số hàng đơn vị khác $0$) biết rằng các chữ số của nó theo thứ tự từ hàng trăm đến hàng đơn vị tỉ lệ với ba số $1; 2;$\(3\)

Trả lời bởi giáo viên

Đáp án đúng: a

Gọi số cần tìm là \(\overline {abc} \) \(\left( {0 < a \le 9;0 \le b,c \le 9;\,c \ne 0;a;b;c \in \mathbb{N}} \right)\)

Vì các chữ số của nó theo thứ tự từ hàng trăm đến hàng đơn vị tỉ lệ với ba số $1; 2;$\(3\)  nên ta có

\(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3}\)

Đặt \(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} = k\,\left( {k \in \mathbb{N}} \right) \) \(\Rightarrow a = k;b = 2k;c = 3k\)

Vì số đã cho là chẵn nên \(c \in \left\{ {2;4;6;8} \right\},\) mà \(c = 3k\) nên \(c = 6\)

Với \(c = 6 \Rightarrow k = 2\) khi đó \(a = 2;b = 4\)

Số cần tìm là \(246\)

Hướng dẫn giải:

Gọi số cần tìm là \(\overline {abc} \,\left( {0 < a \le 9;0 \le b,c \le 9;\,a;b;c \in \mathbb{N}} \right)\)

 Suy ra tỉ lệ thức theo đề bài và biến đổi tỉ lệ thức để giải bài toán

Câu hỏi khác