Tìm \(a\) và \(b\) để đa thức \(f\left( x \right) = {x^4} - 9{x^3} + 21{x^2} + ax + b\) chia hết cho đa thức \(g\left( x \right) = {x^2} - x - 2\)
Trả lời bởi giáo viên
Ta có
Phần dư của phép chia \(f\left( x \right)\) cho \(g\left( x \right)\) là \(R = \left( {a - 1} \right)x + b + 30\)
Để phép chia trên là phép chia hết thì \(R = 0\) với \(\forall x\) \( \Leftrightarrow \left( {a - 1} \right)x + b + 30 = 0\) với \(\forall x\)
\( \Leftrightarrow \left\{ \begin{array}{l}a - 1 = 0\\b + 30 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 30\end{array} \right.\) . Vậy \(a = 1;\,b = - 30\).
Hướng dẫn giải:
+ Sử dụng cách chia đa thức một biến đã sắp xếp.
+ Sử dụng nhận xét: Nếu phép chia có phần dư \(R = 0\) thì phép chia đó là phép chia hết.
Chú ý: \(Ax + B = 0\) với \(\forall x \Leftrightarrow \left\{ \begin{array}{l}A = 0\\B = 0\end{array} \right.\) .
Giải thích thêm:
Một số em tính sai ở bước cuối khi thực hiện phép chia dẫn đến phần dư là \(R = \left( {a - 1} \right)x + b - 30\) do đó ra sai đáp án.