Trả lời bởi giáo viên
Điều kiện: $\left\{ \begin{array}{l}3 - x \ge 0\\x + 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 3\\x \ge - 2\end{array} \right. \Leftrightarrow - 2 \le x \le 3$
Khi đó: $\sqrt {3 - x} = \sqrt {x + 2} + 1 \Leftrightarrow 3 - x = x + 2 + 1 + 2\sqrt {x + 2} \Leftrightarrow - 2{\rm{x}} = 2\sqrt {x + 2} \Leftrightarrow - {\rm{x}} = \sqrt {x + 2} $
Điều kiện $ - x \ge 0 \Leftrightarrow x \le 0$ nên điều kiện của $x$ là: $ - 2 \le x \le 0$
Phương trình $ \Leftrightarrow {x^2} = x + 2 \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\,\,\,(tm)\\x = 2\,\,\,\,\,\,(ktm)\end{array} \right.$
Vậy phương trình có $1$ nghiệm $x = - 1$
Hướng dẫn giải:
Phương trình có dạng: $\sqrt {f(x)} = \sqrt {g(x)} + c$, điều kiện là $\left\{ \begin{array}{l}f(x) \ge 0\\g(x) \ge 0\end{array} \right.$
Khi đó: $f(x) = {\left( {g(x) + c} \right)^2}$, giải phương trình ta tìm được $x$ .