Câu hỏi:
1 năm trước

Tam giác \(ABC\) vuông tại \(A\), có \(AB = c,\;AC = b\). Gọi \({\ell _a}\) là độ dài đoạn phân giác trong góc \(\widehat {BAC}\). Tính \({\ell _a}\) theo \(b\) và \(c\).

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{b^2} + {c^2}} \).

Do \(AD\) là phân giác trong của \(\widehat {BAC}\)

\( \Rightarrow BD = \dfrac{{AB}}{{AC}}.DC\)\( = \dfrac{c}{b}.DC = \dfrac{c}{{b + c}}.BC = \dfrac{{c\sqrt {{b^2} + {c^2}} }}{{b + c}}\).

Theo định lí hàm cosin, ta có

\(B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos \widehat {ABD}\)\( \Leftrightarrow \dfrac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}} = {c^2} + A{D^2} - 2c.AD.\cos 45^\circ \)

\( \Rightarrow A{D^2} - c\sqrt 2 .AD + \left( {{c^2} - \dfrac{{{c^2}\left( {{b^2} + {c^2}} \right)}}{{{{\left( {b + c} \right)}^2}}}} \right) = 0\)\( \Leftrightarrow A{D^2} - c\sqrt 2 .AD + \dfrac{{2b{c^3}}}{{{{\left( {b + c} \right)}^2}}} = 0\)

\( \Rightarrow AD = \dfrac{{\sqrt 2 bc}}{{b + c}}\) hay \({\ell _a} = \dfrac{{\sqrt 2 bc}}{{b + c}}\).

Hướng dẫn giải:

Sử dụng định lí cô sin cho tam giác \(ABD\)

Câu hỏi khác