Câu hỏi:
2 năm trước

Rút gọn biểu thức  \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \) với \(ab \ne 0\) ta được:

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có: \(\dfrac{{{a^2}}}{{11}}.\sqrt {\dfrac{{121}}{{{a^4}{b^{10}}}}} \)\(\dfrac{{{a^2}}}{{11}}.\dfrac{{\sqrt {121} }}{{\sqrt {{a^4}} .\sqrt {{b^{10}}} }} = \dfrac{{{a^2}}}{{11}}.\dfrac{{\sqrt {{{11}^2}} }}{{\sqrt {{{\left( {{a^2}} \right)}^2}} .\sqrt {{{\left( {{b^5}} \right)}^2}} }} = \dfrac{{{a^2}}}{{11}}.\dfrac{{11}}{{{a^2}.\left| {{b^5}} \right|}} = \dfrac{1}{{\left| {{b^5}} \right|}}\).

Hướng dẫn giải:

Sử dụng công thức khai phương một tích: Với hai số \(a,b\) không âm, ta có \(\sqrt {ab}  = \sqrt a .\sqrt b \)

Sử dụng công thức khai phương một thương: Với số \(a\) không âm và số \(b\) dương, ta có \(\sqrt {\dfrac{a}{b}}  = \dfrac{{\sqrt a }}{{\sqrt b }}\).

Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)

Giải thích thêm:

Một số em không để ý rằng đề bài không cho b âm hay dương nên ta chưa thể bỏ trị tuyệt đối của \({b^5}\) dẫn đến sai đáp án.

Câu hỏi khác