Ở một tầng tháp cách mặt đất \(45m\), một người thả rơi một vật. Một giây sau người đó ném vật thứ 2 xuống theo hướng thẳng đứng. Hai vật chạm đất cùng lúc. Tính vận tốc ném của vật thứ 2. Lấy \(g = 10m/{s^2}\)
Trả lời bởi giáo viên
+ Chọn HQC :
- O tại vị trí thả vật, chiều dương hướng xuống
+ Gốc thời gian \(t = 0\): lúc thả vật 1 \( \to \left\{ \begin{array}{l}{t_{{0_1}}} = 0\\{t_{{0_2}}} = 1s\end{array} \right.\)
+ Lập các phương trình chuyển động :
- PT của vật 1:
\({s_1} = \frac{1}{2}g{t^2} = 5{t^2}\) (1)
- PT của vật 2:
\({s_2} = {v_0}\left( {t - 1} \right) + \frac{1}{2}g{\left( {t - 1} \right)^2} = {v_0}\left( {t - 1} \right) + 5{\left( {t - 1} \right)^2}\) (2)
Ta có:
+ Thời gian vật 1 chuyển chạm đất là: \({s_1} = 5{t^2} = 45 \to t = \sqrt {\frac{{45}}{5}} = 3{\rm{s}}\)
+ Mặt khác, vật 1 và vật 2 chạm đất cùng lúc, thay \(t = 3{\rm{s}}\) vào phương trình (2), ta được:
\(\begin{array}{l}{v_0}\left( {3 - 1} \right) + 5{\left( {3 - 1} \right)^2} = 45\\ \leftrightarrow 2{v_0} + 20 = 45\\ \to {v_0} = 12,5m/s\end{array}\)
Hướng dẫn giải:
+ Chọn hệ quy chiếu: Vị trí ban đầu, chiều dương
+ Chọn gốc thời gian
+ Viết phương trình chuyển động của mỗi vật: \(s = \frac{1}{2}g{t^2}\)