Một vật dao động điều hòa với tần số góc $ω$, khi thế năng bằng $3$ lần động năng thì li độ $x$ và vận tốc $v$ của vật có mối liên hệ với nhau như thế nào?
Trả lời bởi giáo viên
Khi Wt = 3Wđ
\(\left\{ \begin{array}{l}{W_t} = 3{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{3}{{3 + 1}}W\\{W_d} = \dfrac{1}{{3 + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x = \pm A\sqrt {\dfrac{3}{{3 + 1}}} \\v = \pm \dfrac{{A\omega }}{{\sqrt {3 + 1} }}\end{array} \right. \to \dfrac{x}{v} = \dfrac{{\sqrt 3 }}{\omega }\)
Hướng dẫn giải:
Áp dụng biểu thức xác định li độ, vận tốc dao động của vật khi biết Wt = nWđ :
\(\left\{ \begin{array}{l}{W_t} = n{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{n}{{n + 1}}W\\{W_d} = \dfrac{1}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x = \pm A\sqrt {\dfrac{n}{{n + 1}}} \\v = \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\end{array} \right.\)