Lập phương trình chính tắc của hypebol $(H)$ biết $(H)$ có đỉnh ${A_2}(3;0)$ và đường tròn ngoại tiếp hình chữ nhật cơ sở là: $(C):\,{x^2} + {y^2} = 16$
Trả lời bởi giáo viên
Gọi phương trình chính tắc của hypebol $(H)$ là: $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1,\,\,(a,\,b > 0)$
$(H)$ có đỉnh ${A_2}(3;0)$$ \Rightarrow a = 3$
Đường tròn $(C):\,{x^2} + {y^2} = 16$ có bán kính $R = 4$
$ \Rightarrow {a^2} + {b^2} = {4^2} \Rightarrow c = 4$
Mà ${a^2} + {b^2} = {c^2} \Rightarrow {3^2} + {b^2} = {4^2} \Leftrightarrow {b^2} = 7$
Phương trình chính tắc của $(H):$ $\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{7} = 1$
Hướng dẫn giải:
Hyberbol \(\left( H \right):\,\,\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\) có đỉnh \({A_2}\left( {a;0} \right) \Rightarrow \) giá trị hệ số $a.$
Hình chữ nhật cơ sở có kích thước \(2a \times 2b \Rightarrow \) bán kính đường tròn ngoại tiếp hình chữ nhật cơ sở.