Câu hỏi:
2 năm trước
Đường tròn tâm $I\left( {a;b} \right)$ và bán kính $R$ có phương trình ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}$ được viết lại thành ${x^2} + {y^2} - 2ax - 2by + c = 0$. Khi đó biểu thức nào sau đây đúng?
Trả lời bởi giáo viên
Đáp án đúng: a
Phương trình đường tròn ${x^2} + {y^2} - 2ax - 2by + c = 0$ có tâm \(I\left( {a;b} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).
Do đó: \(c = {a^2} + {b^2} - {R^2}\).
Hướng dẫn giải:
Sử dụng dạng khai triển của phương trình đường tròn:
Phương trình ${x^2} + {y^2} + 2ax + 2by + c = 0{\rm{ }}$với điều kiện ${a^2} + {b^2} - c > 0$, là phương trình đường tròn tâm \(I\left( { - a; - b} \right)\) bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).