Diện tích hình bình hành \(ABCD\) có các điểm \(A\left( {1;0;0} \right),B\left( {0;1;2} \right),C\left( { - 1;0;0} \right)\) là:
Trả lời bởi giáo viên
Ta có: \(\overrightarrow {AB} = \left( { - 1;1;2} \right),\overrightarrow {AC} = \left( { - 2;0;0} \right) \)
$\Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l} - 1\\ - 2\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\ - 2\end{array}&\begin{array}{l}1\\0\end{array}\end{array}} \right|} \right) = \left( {0; - 4;2} \right)$
Do đó diện tích hình bình hành \({S_{ABCD}}\) là:
\({S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \sqrt {{0^2} + {{\left( { - 4} \right)}^2} + {2^2}} = 2\sqrt 5 \)
Hướng dẫn giải:
Sử dụng công thức tính diện tích hình bình hành \({S_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]} \right| = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right|\)
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án C vì tính sai véc tơ tích có hướng.