Câu hỏi:
2 năm trước
Chu kì bán rã của nguyên tố phóng xạ poloni $210$ là $138$ ngày (nghĩa là sau $138$ ngày khối lượng của nguyên tố đó chỉ còn một nửa). Khi đó khối lượng còn lại của $20$ gam poloni $210$ sau $7314$ ngày là:
Trả lời bởi giáo viên
Đáp án đúng: a
Gọi \({u_n}\) là khối lượng còn lại của $20$ gam poloni sau $n$ chu kì bán rã.
Ta có $7314$ ngày gồm \(\dfrac{{7314}}{{138}} = 53\) chu kì bán rã.
Do đó ta cần tính \({u_{53}}\)
Theo giả thiết của bài toán thì \(\left( {{u_n}} \right)\) là một cấp số nhân với số hạng đầu \({u_1} = \dfrac{{20}}{2} = 10;q = \dfrac{1}{2}\)
Do đó \({u_{53}} = 10{\left( {\dfrac{1}{2}} \right)^{52}} \approx 2,{22.10^{ - 15}}\)
Hướng dẫn giải:
Sử dụng công thức số hạng tổng quát của cấp số nhân để tính số hạng \({u_{53}}\).