Trả lời bởi giáo viên
Giả sử ta có phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M$ thành điểm ${M_1}$ và phép tịnh tiến theo vectơ $\overrightarrow v $ biến điểm ${M_1}$ thành điểm ${M_2}$. Ta có: $\overrightarrow {M{M_1}} = \overrightarrow u $ và $\overrightarrow {{M_1}{M_2}} = \overrightarrow v $.
Do đó $\overrightarrow {M{M_1}} + \overrightarrow {{M_1}{M_2}} = \overrightarrow u + \overrightarrow v \Leftrightarrow \overrightarrow {M{M_2}} = \overrightarrow u + \overrightarrow v $
Như thế phép tịnh tiến theo vectơ $\overrightarrow u + \overrightarrow v $ biến $M$ thành ${M_2}$.
Vậy: Hợp của hai phép tịnh tiến theo vectơ $\overrightarrow u $ và $\overrightarrow v $ là một phép tịnh tiến theo vectơ $\overrightarrow u + \overrightarrow v $
+ Hợp của phép tịnh tiến theo vectơ $\overrightarrow u $ và phép tịnh tiến theo vectơ $ - \overrightarrow u $ theo kết quả trên là phép tịnh tiến theo vectơ $\overrightarrow u + \left( { - \overrightarrow u } \right) = \overrightarrow 0 $, đó là một phép đồng nhất.
+ Câu D sai vì: Nếu $\Delta $ là đường thẳng song song với giá của vectơ $\overrightarrow u $ thì ảnh của $\Delta $ là chính nó.
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án D vì quên mất trường hợp đường thẳng biến thành chính nó.