Cho tích phân $I = \int\limits_0^\pi {{x^2}\cos xdx} $ và $u = {x^2};dv = \cos xdx$ . Khẳng định nào sau đây đúng?
Trả lời bởi giáo viên
$I = \int\limits_0^\pi {{x^2}\cos xdx} $
Đặt $\left\{ \begin{array}{l}u = {x^2}\\dv = \cos xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 2xdx\\v = \int {\cos xdx} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 2xdx\\v = \sin x\end{array} \right.$
$ \Rightarrow I = \left. {{x^2}.\sin x} \right|_0^\pi - 2\int\limits_0^\pi {x.\sin xdx} $
Hướng dẫn giải:
Sử dụng công thức tính tích phân từng phần như đề bài đã đưa ra và tính.
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \sin \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = - \dfrac{1}{a}\cos \left( {ax + b} \right)\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \cos \left( {ax + b} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{1}{a}\sin \left( {ax + b} \right)\end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\sin \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \) hoặc \(\int\limits_m^n {f\left( x \right)\cos \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)