Trả lời bởi giáo viên
Đặt $\left\{ \begin{array}{l}u = 1 - \ln x\\dv = 2xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = - \dfrac{{dx}}{x}\\v = {x^2}\end{array} \right.$
$I = {x^2}\left( {1 - \ln x} \right)\left| {\begin{array}{*{20}{c}}{^e}\\{_1}\end{array}} \right. - \int\limits_1^e { - xdx} = - 1 + \dfrac{{{x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^e}\\{_1}\end{array}} \right. = - 1 + \left( {\dfrac{{{e^2}}}{2} - \dfrac{1}{2}} \right) = \dfrac{{{e^2} - 3}}{2}$
Hướng dẫn giải:
Sử dụng phương pháp tích phân từng phần hàm số có chứa logarit.
- Bước 1: Đặt \(\left\{ \begin{array}{l}u = \ln \left( {ax + b} \right)\\dv = f\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{a}{{\left( {ax + b} \right)}}dx\\v = \int {f\left( x \right)dx} \end{array} \right.\)
- Bước 2: Tính tích phân theo công thức \(\int\limits_m^n {f\left( x \right)\ln \left( {ax + b} \right)dx} = \left. {uv} \right|_m^n - \int\limits_m^n {vdu} \)