Trả lời bởi giáo viên
Ta đi tính tích vô hướng ở các phương án. So sánh vế trái với vế phải.
Phương án A:\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC\cos {60^{\rm{o}}} = 2 \Rightarrow \left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)\overrightarrow {BC} = 2\overrightarrow {BC} \) nên loại A.
Phương án B:\(\overrightarrow {BC} .\overrightarrow {CA} = BC.AC\cos {120^{\rm{o}}} = - 2\) nên loại B.
Phương án C:\(\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right).\overrightarrow {AC} = \overrightarrow {AC} .\overrightarrow {AC} = 4\) nên chọn C.
Phương án D: $\left( {\overrightarrow {BC} - \overrightarrow {AC} } \right).\overrightarrow {BA} = \left( { - \overrightarrow {CB} + \overrightarrow {CA} } \right).\overrightarrow {BA} = \left( {\overrightarrow {CA} - \overrightarrow {CB} } \right).\overrightarrow {BA} = \overrightarrow {BA} .\overrightarrow {BA} = B{A^2} = 4$ nên loại D.
Hướng dẫn giải:
Sử dụng công thức tính tích vô hướng của hai véc tơ \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).