Trả lời bởi giáo viên
Qua \(H\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(F\), kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(E\).
Vì \(AE//HF\) (cách vẽ) nên \(\widehat {EAH} = \widehat {FHA}\) (hai góc so le trong bằng nhau)
Vì \(AF//HE\) (cách vẽ) nên \(\widehat {AHE} = \widehat {HAF}\) (hai góc so le trong bằng nhau)
Xét \(\Delta AEH\) và \(\Delta HFA\) có:
\(AH\) cạnh chung
\(\widehat {EAH} = \widehat {FHA}\,\,(cmt)\)
\(\widehat {AHE} = \widehat {HAF}\,\,(cmt)\)
\( \Rightarrow \Delta AEH = \Delta HFA\,(g.c.g)\)
\( \Rightarrow EH = AF;\,AE = HF\) (hai cạnh tương ứng).
Vì \(BH \bot AC\) và \(FH//AC\) nên \(BH \bot FH\).
Ta có: \(BF;\,BH\) lần lượt là đường xiên và đường vuông góc kẻ từ \(B\) đến \(FH\) nên \(BF > BH\) (quan hệ đường xiên – đường vuông góc).
Vì \(CH \bot AB\) và \(EH//AB\) nên \(CH \bot EH\).
Ta có: \(CE;\,CH\) lần lượt là đường xiên và đường vuông góc kẻ từ \(C\) đến \(EH\) nên \(CE > CH\) (quan hệ đường xiên – đường vuông góc).
Xét \(\Delta AEH\) có: \(AE + EH > HA\) (bất đẳng thức tam giác)
Ta có: \(AB + AC = AF + FB + AE + EC\)
\( \Rightarrow AB + AC = EH + FB + AE + EC\) (vì \(AF = EH\,(cmt)\))
\( \Rightarrow AB + AC = \left( {AE + EH} \right) + FB + EC > HA + HB + HC\).
Vậy \(AB + AC > HA + HB + HC\).
Hướng dẫn giải:
- Qua \(H\) kẻ đường thẳng song song với \(AC\) cắt \(AB\) tại \(F\), kẻ đường thẳng song song với \(AB\) cắt \(AC\) tại \(E\).
- Chứng minh \(\Delta AEH = \Delta HFA\,\)\( \Rightarrow EH = AF;\,AE = HF\) (hai cạnh tương ứng).
- Sử dụng quan hệ đường xiên – đường vuông góc để chứng minh \(BF > BH\),\(CE > CH\).
- Áp dụng bất đẳng thức tam giác vào \(\Delta AEH\) ta có: \(AE + EH > HA\).
Từ đó lập luận suy ra điều phải chứng minh.