Câu hỏi:
2 năm trước
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có độ dài cạnh đáy bằng \(a\) và chiều cao bằng \(h\). Tính thể tích \(V\) của khối trụ ngoại tiếp lăng trụ đã cho.
Trả lời bởi giáo viên
Đáp án đúng: b
Khối trụ ngoại tiếp lăng trụ tam giác đều có hình tròn đáy là hình tròn ngoại tiếp tam giác đáy của lăng trụ, và chiều cao bằng chiều cao lăng trụ.
Tam giác đều cạnh \(a\) có bán kính đường tròn ngoại tiếp bằng \(\dfrac{{\sqrt 3 a}}{3}\). Vậy thể tích của khối trụ cần tìm là \(V = h.S = h.\pi .{\left( {\dfrac{{\sqrt 3 a}}{3}} \right)^2} = \dfrac{{\pi {a^2}h}}{3}\)(đvtt).
Hướng dẫn giải:
- Tính bán kính đường tròn ngoại tiếp tam giác đáy.
- Công thức thể tích khối trụ: \(V = \pi {R^2}h\)