Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích khối chóp $S.ABC$?
Trả lời bởi giáo viên
Gọi O là trọng tâm tam giác đều ABC
Vì chóp S.ABC đều nên \(SO \bot \left( {ABC} \right)\)
\( \Rightarrow OA\) là hình chiếu vuông góc của SA lên \(\left( {ABC} \right)\)\( \Rightarrow \widehat {\left( {SA;\left( {ABC} \right)} \right)} = \widehat {\left( {SA;OA} \right)} = \widehat {SAO} = {60^0}\)
\(SO \bot \left( {ABC} \right) \Rightarrow SO \bot OA \Rightarrow \Delta SAO\) vuông tại O
Gọi D là trung điểm của BC ta có: \(AD = \dfrac{{a\sqrt 3 }}{2}\)\( \Rightarrow AO = \dfrac{2}{3}AD = \dfrac{2}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow SO = AO.\tan 60 = \dfrac{{a\sqrt 3 }}{3}.\sqrt 3 = a\)
Vì tam giác ABC đều nên \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Vậy \({V_{S.ABC}} = \dfrac{1}{3}SO.{S_{\Delta ABC}} = \dfrac{1}{3}a\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{12}}\)
Hướng dẫn giải:
- Bước 1: Tính diện tích đáy \({S_{ABC}}\).
- Bước 2: Xác định góc giữa cạnh bên và mặt đáy, sử dụng định nghĩa góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
- Bước 3: Tính chiều cao \(h = SO\).
- Bước 4: Tính thể tích \(V = \dfrac{1}{3}Sh\).