Câu hỏi:
2 năm trước

Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi $AA'$  là đường kính của đường tròn ngoại tiếp tam giác $ABC$

\(AC \bot A'C;\,AB \bot A'B\)

Ta chứng minh \(AC' \bot A'C'\)

\(SA \bot A'C;\,AC \bot A'C \Rightarrow A'C \bot AC'\)

Mà \(AC' \bot SC \Rightarrow AC' \bot A'C'\)

Tương tự \(AB' \bot A'B'\)

Như vậy $B,C,C',B'$ cùng nhìn $AA'$  bằng $1$  góc vuông nên $A,B,C,B',C'$ cùng thuộc $1$  mặt cầu có đường kính là $AA'$  và cũng đồng thời là đường kính của đường tròn ngoại tiếp tam giác $ABC$.

Tính \(BC = \sqrt {{b^2} + {c^2} - 2b\cos \alpha } \)

Trong tam giác \(ABC:\dfrac{{BC}}{{\sin A}} = 2R \Rightarrow R = \dfrac{{\sqrt {{b^2} + {c^2} - 2bc\cos \alpha } }}{{2\sin \alpha }}\)

Hướng dẫn giải:

+ Chứng minh được tâm mặt cầu ngoại tiếp của hình chóp $ABCC'B'$  trùng với tâm đường tròn ngoại tiếp của tam giác  

Câu hỏi khác