Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int_0^1 {f\left( x \right)dx = 3\int_0^3 {f\left( x \right)} dx = 6} \). Giá trị của \(\int_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} \) bằng:
Trả lời bởi giáo viên
Ta có \(\int\limits_{ - 1}^1 {f\left( {\left| {2x - 1} \right|} \right)dx} = \int\limits_{ - 1}^{\frac{1}{2}} {f\left( {1 - 2x} \right)dx} + \int\limits_{\frac{1}{2}}^1 {f\left( {2x - 1} \right)dx} \)
\( \Rightarrow I = - \frac{1}{2}\int\limits_{ - 1}^{\frac{1}{2}} {f\left( {1 - 2x} \right)d\left( {1 - 2x} \right)} + \frac{1}{2}\int\limits_{\frac{1}{2}}^1 {f\left( {2x - 1} \right)d\left( {2x - 1} \right)} \)
\(\begin{array}{l} \Leftrightarrow I = - \frac{1}{2}\int\limits_3^0 {f\left( t \right)dt} + \frac{1}{2}\int\limits_0^1 {f\left( t \right)dt} \\ \Leftrightarrow I = \frac{1}{2}\int\limits_0^3 {f\left( t \right)dt} + \frac{1}{2}\int\limits_0^1 {f\left( t \right)dt} = \frac{1}{2}\left( {2 + 6} \right) = 4\end{array}\)
Hướng dẫn giải:
Chia khoảng để phá dấu trị tuyệt đối của \(f\left( {\left| {2x - 1} \right|} \right)\).
Áp dụng các tính chất cộng để tìm tích phân.