Câu hỏi:
2 năm trước
Cho elip $(E)$ có phương trình chính tắc là \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\). Gọi \(2c\) là tiêu cự của $(E).$ Trong các mệnh đề sau, mệnh đề nào đúng?
Trả lời bởi giáo viên
Đáp án đúng: c
Theo lý thuyết phương trình chính tắc của elip có \({a^2} = {b^2} + {c^2}\)
Hướng dẫn giải:
Áp dụng lý thuyết phương trình chính tắc của elip.
Phương trình chính tắc của elip có dạng \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) và \({a^2} = {b^2} + {c^2}\) với \(2c\) là tiêu cự của (E).