Câu hỏi:
2 năm trước

Cho đường tròn \(\left( O \right)\) đường kính \(AB,\) vẽ góc ở tâm \(\widehat {AOC} = 55^\circ \) . Vẽ dây \(CD\) vuông góc với \(AB\) và dây \(DE\) song song với \(AB.\) Tính số đo cung nhỏ \(BE\)

Trả lời bởi giáo viên

Đáp án đúng: a
Lời giải - Đề kiểm tra giữa học kì 2 - Đề số 3 - ảnh 1

Xét $\left( O \right)$ có $CD \bot OA;ED{\rm{//}}OA \Rightarrow CD \bot ED$ hay $\widehat {EDC} = 90^\circ $ mà $E;D;C \in \left( O \right)$ nên $EC$ là đường kính của $\left( O \right)$ hay $E;O;C$ thẳng hàng.

Do đó $\widehat {BOE} = \widehat {COA} = 55^\circ $ (đối đỉnh) nên số đo cung nhỏ $BE$ là $55^\circ $.

Hướng dẫn giải:

Bước 1: Chứng minh $E;O;C$ thẳng hàng

Bước  2: Tính  số đo cung thông qua góc ở tâm

Câu hỏi khác