Câu hỏi:
2 năm trước
Cho 4 điểm không đồng phẳng $A,\,\,B,\,\,C,\,\,D.$ Gọi $I,\,\,K$ lần lượt là trung điểm của $AD$ và $BC.$ Giao tuyến của $\left( {IBC} \right)$ và $\left( {KAD} \right)$ là:
Trả lời bởi giáo viên
Đáp án đúng: a
Điểm $K$ là trung điểm của $BC$ suy ra $K \in \left( {IBC} \right)\,\, \Rightarrow \,\,IK \subset \left( {IBC} \right).$
Điểm $I$ là trung điểm của $AD$ suy ra $I \in \left( {KAD} \right)\,\, \Rightarrow \,\,IK \subset \left( {KAD} \right).$
Vậy giao tuyến của hai mặt phẳng $\left( {IBC} \right)$ và $\left( {KAD} \right)$ là $IK.$
Hướng dẫn giải:
- Chứng minh \(I,K\) thuộc cả hai mặt phẳng, từ đó suy ra \(IK\) là giao tuyến.