Biết rằng$\int {{e^{2x}}\cos 3xdx = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c} $, trong đó $a, b, c$ là các hằng số, khi đó tổng $a + b$ có giá trị là:
Trả lời bởi giáo viên
Đặt$f\left( x \right) = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c$. Ta có
$f'\left( x \right) = 2a{e^{2x}}\cos 3x - 3a{e^{2x}}\sin 3x + 2b{e^{2x}}\sin 3x + 3b{e^{2x}}\cos 3x $
$= \left( {2a + 3b} \right){e^{2x}}\cos 3x + \left( {2b - 3a} \right){e^{2x}}\sin 3x$
Để $f\left( x \right)$ là một nguyên hàm của hàm số ${e^{2x}}\cos 3x$, điều kiện là
$f'\left( x \right) = {e^{2x}}\cos 3x \Leftrightarrow \left\{ \begin{array}{l}2a + 3b = 1\\2b - 3a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{{13}}\\b = \dfrac{3}{{13}}\end{array} \right. \Rightarrow a + b = \dfrac{5}{{13}}$
Hướng dẫn giải:
Đối với bài toán này ta có thể tính đạo hàm rồi đồng nhất hệ số tìm \(a,b,c\).