2 câu trả lời
~ Bạn tham khảo ~
`[x-3]/[x-2] + [x-2]/[x-4] = -1`
ĐKXĐ : `x\ne2;4`
`<=> [(x-3)(x-4)]/[(x-2)(x-4)] + [(x-2)^2]/[(x-2)(x-4)] = -[(x-2)(x-4)]/[(x-2)(x-4)]`
`=> (x-3)(x-4) + (x-2)^2 + (x-2)(x-4) = 0`
`<=> x^2 -7x + 12 + x^2 - 4x + 4 + x^2 -6x + 8 = 0`
`<=> 3x^2 -17x + 24 = 0`
`<=> 3x^2 - 9x - 8x + 24 = 0`
`<=> 3x(x-3) - 8(x-3) = 0`
`<=> (x-3)(3x-8) = 0`
\(⇔\left[ \begin{array}{l}x-3=0\\3x-8=0\end{array} \right.\)
\(⇔\left[ \begin{array}{l}x=3\\x=\dfrac83\end{array} \right.\)
Vậy phương trình có tập nghiệm `S={3;8/3}`
$\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1$ $(ĐKXĐ:x≠2;x≠4)$
$⇔ \dfrac{(x-4)(x-3)}{(x-2)(x-4)}+\dfrac{(x-2)(x-2)}{(x-2)(x-4)}=\dfrac{-1(x-2)(x-4)}{(x-2)(x-4)}$
$⇔ \dfrac{x^2-7x+12}{(x-2)(x-4)}+\dfrac{x^2-4x+4}{(x-2)(x-4)}=\dfrac{-(x^2-6x+8)}{(x-2)(x-4)}$
$⇔ \dfrac{x^2-7x+12}{(x-2)(x-4)}+\dfrac{x^2-4x+4}{(x-2)(x-4)}=\dfrac{-x^2+6x-8}{(x-2)(x-4)}$
$⇒ x^2-7x+12+x^2-4x+4=-x^2+6x-8$
$⇔ 2x^2-11x+16=-x^2+6x-8$
$⇔ 2x^2+x^2-11x-6x+16+8=0$
$⇔ 3x^2-17x+24=0$
$⇔ 3x^2-8x-9x+24=0$
$⇔ x(3x-8)-3(3x-8)=0$
$⇔ (x-3)(3x-8)=0$
$⇔$ \(\left[ \begin{array}{l}x-3=0\\3x-8=0\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=3\\3x=8\end{array} \right.\)
$⇔$ \(\left[ \begin{array}{l}x=3\\x=\dfrac{8}{3}\end{array} \right.\) (thỏa mãn ĐKXĐ)
Vậy phương trình có tập nghiệm `S={3;(8)/(3)}`
$#thanhmaii2008$
