2 câu trả lời
Đáp án: $\left[ \begin{array}{l}
x = - 1\\
x = \frac{{1 + \sqrt 5 }}{2}
\end{array} \right.$
Giải thích các bước giải:
$\begin{array}{l}
{x^2} - 1 = \sqrt {x + 1} \left( {dk:x \ge - 1} \right)\\
\Rightarrow \left( {x + 1} \right)\left( {x - 1} \right) - \sqrt {x + 1} = 0\\
\Rightarrow \sqrt {x + 1} .\left( {\sqrt {x + 1} .\left( {x - 1} \right) - 1} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
\sqrt {x + 1} = 0\\
\sqrt {x + 1} \left( {x - 1} \right) - 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = - 1\left( {tm} \right)\\
\sqrt {x + 1} \left( {x + 1} \right) - 2\sqrt {x + 1} - 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = - 1\\
{\left( {\sqrt {x + 1} } \right)^3} - 2\sqrt {x + 1} - 1 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = - 1\\
\sqrt {x + 1} = - 1\left( {ktm} \right)\\
\sqrt {x + 1} = \frac{{1 + \sqrt 5 }}{2}\\
\sqrt {x + 1} = \frac{{1 - \sqrt 5 }}{2}\left( {ktm} \right)
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = - 1\\
x + 1 = \frac{{3 + \sqrt 5 }}{2}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = - 1\\
x = \frac{{1 + \sqrt 5 }}{2}\left( {tm} \right)
\end{array} \right.
\end{array}$