`{x +1}/{1998} + {x + 2}/{1997} = {x + 3}/{1996} + {x + 4}/{1995}` giải pt
2 câu trả lời
Đáp án + Giải thích các bước giải:
`(x+1)/1998 + (x+2)/1997 = (x+3)/1996 + (x+4)/1995`
`⇔ (x+1)/1998 + 1 + (x+2)/1997 +1 = (x+3)/1996 +1 + (x+4)/1995 +1`
`⇔(x+1)/1998 1998/1998+ (x+2)/1997 +1997/1997= (x+3)/1996 +1996/1996+ (x+4)/1995 +1995/1995`
`⇔ (x+1+1998)/1998 + (x+2+1997)/1997 = (x+3+1996)/1996 + (x+4+1995)/1995`
`⇔ (x+1999)/1998 + (x+1999)/1997 = (x+1999)/1996 + (x+1999)/1995`
`⇔ (x+1999)/1998 + (x+1999)/1997 - (x+1999)/1996 - (x+1999)/1995=0`
`⇔ (x+1999).(1/1998+1/1997-1/1996-1/1995)=0`
`⇔ x+1999=0` vì `1/1998+1/1997-1/1996-1/1995\ne0`
`⇔ x=-1999`
Vậy phương trình có nghiệm `x=-1999`
$\frac{x+1}{1998}$ +1+$\frac{x+2}{1997}$ +1=$\frac{x+3}{1996}$ +1+$\frac{x+4}{1995}$ +1
⇔$\frac{x+1+1998}{1998}$ +$\frac{x+2+1997}{1997}$ =$\frac{x+3+1996}{1996}$ +$\frac{x+4+1995}{1995}$
⇔$\frac{x+1999}{1998}$ +$\frac{x+1999}{1997}$= $\frac{x+1999}{1996}$ +$\frac{x+1999}{1995}$
⇔$\frac{x+1999}{1998}$ +$\frac{x+1999}{1997}$- $\frac{x+1999}{1996}$ -$\frac{x+1999}{1995}$=0
⇔(x+1999)($\frac{1}{1998}$ +$\frac{1}{1997}$ -$\frac{1}{1996}$ -$\frac{1}{1995}$ )=0
Vì ($\frac{1}{1998}$ +$\frac{1}{1997}$ -$\frac{1}{1996}$ -$\frac{1}{1995}$ )khác0
=>x+1999=0
=>x=-1999