Tính tổng sau C= ( 1 - 1/2 ) + ( 1 - 1/6 ) + ( 1 - 1/12 ) + (1-1/20)
2 câu trả lời
$C$ = $($ $1$ - $\dfrac{1}{2}$ $)$ + $($ $1$ - $\dfrac{1}{6}$ $)$ + $($ $1$ - $\dfrac{1}{12}$ $)$ + $($ $1$ - $\dfrac{1}{20}$ $)$
= $($ $1$ + $1$ +$1$ + $1$ $)$ - $($ $\dfrac{1}{2}$ + $\dfrac{1}{6}$ + $\dfrac{1}{12}$ + $\dfrac{1}{20}$ $)$
= $4$ - $($ $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ + $\dfrac{1}{4.5}$ $)$
= $4$ - $($ $1$ - $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\dfrac{1}{3}$ + $\dfrac{1}{3}$ - $\dfrac{1}{4}$ + $\dfrac{1}{4}$ - $\dfrac{1}{5}$ $)$
= $5$ - $($ $1$ - $\dfrac{1}{5}$ $)$ = $5$ - $1$ + $\dfrac{1}{5}$ = $4$ + $\dfrac{1}{5}$
= $\dfrac{21}{5}$
@`Pảk`
C = `1` . `4` + ( `1/2` - `1/6` - `1/12` - `1/20` )
C = `4` + ( `1/2` - `1/2` . `1/3` - `1/3` . `1/4` . `1/4` . `1/5`)
C = `4` + `1/5`
C = `21/5` hay `4,2`