Tính tổng sau C= ( 1 - 1/2 ) + ( 1 - 1/6 ) + ( 1 - 1/12 ) + (1-1/20)

2 câu trả lời

$C$ = $($ $1$ - $\dfrac{1}{2}$ $)$ + $($ $1$ - $\dfrac{1}{6}$ $)$ + $($ $1$ - $\dfrac{1}{12}$ $)$ + $($ $1$ - $\dfrac{1}{20}$ $)$

= $($ $1$ + $1$ +$1$ + $1$ $)$ - $($ $\dfrac{1}{2}$ + $\dfrac{1}{6}$ + $\dfrac{1}{12}$ + $\dfrac{1}{20}$ $)$

= $4$ - $($ $\dfrac{1}{1.2}$ + $\dfrac{1}{2.3}$ + $\dfrac{1}{3.4}$ + $\dfrac{1}{4.5}$ $)$

= $4$ - $($ $1$ - $\dfrac{1}{2}$ + $\dfrac{1}{2}$ - $\dfrac{1}{3}$ + $\dfrac{1}{3}$ - $\dfrac{1}{4}$ + $\dfrac{1}{4}$  - $\dfrac{1}{5}$ $)$

= $5$ - $($ $1$ - $\dfrac{1}{5}$ $)$ = $5$ - $1$ + $\dfrac{1}{5}$ = $4$ + $\dfrac{1}{5}$ 

= $\dfrac{21}{5}$ 

@`Pảk`

C = `1` . `4` + ( `1/2` - `1/6` - `1/12` - `1/20` )

C = `4` +  ( `1/2` - `1/2` . `1/3` - `1/3` . `1/4` . `1/4` . `1/5`)

C = `4` + `1/5`

C = `21/5` hay `4,2`