Tính bán kính đường tròn ngoại tiếp tam giác ABC biết AB=12 và cot(A+B)=1/3
1 câu trả lời
Đáp án:
R=2√10
Giải thích các bước giải:
cotC=cot[1800−(A+B)]=−cot(A+B)=−13
⇒sinC và cosC trái dấu, theo vòng tròn lượng giác
→90o<C<180o⇒sinC>0
cot2C+1=1sin2C⇒sinC=3√10
Ta có:
ABsinC=2R⇒R=2√10.
Câu hỏi trong lớp
Xem thêm