Tìm x ∈ Z, biết: a) 5x-1 ⋮ x+5 b) 4x-6 ⋮ 2x-1 c) 7x+5 ⋮ x-2 d) 3x-1 ⋮ 3x+2

1 câu trả lời

`a ) 5x - 1 \vdots x + 5`

`=> (5x + 25) - 26 \vdots x + 5`

`=> 26 \vdots x + 5`              ( Vì `5x + 25 \vdots x + 5` )

`=> x + 5 ∈ Ư(26) = {-26 ; -13 ; -2 ; -1 ; 1 ; 2 ; 13 ; 26}`

`=> x ∈ {-31 ; -18 ; -7 ; -6 ; -4 ; -3 ; 8 ; 21}`

Vậy ` x ∈ {-31 ; -18 ; -7 ; -6 ; -4 ; -3 ; 8 ; 21}`

`b ) 4x - 6 \vdots 2x - 1`

`=> (4x - 2) - 4 \vdots 2x - 1`

`=> 4 \vdots 2x - 1`         ( Vì `4x- 2 \vdots 2x-1` )

`=> 2x -1 ∈ Ư(4) = {-4 ; -2 ; -1 ; 1 ; 2 ; 4}`

`=> 2x ∈ {-3 ; -1 ; 0 ; 2 ; 3 ; 5}`

`=> x ∈ {-3/2 ; -1/2 ; 0 ; 1 ; 3/2 ; 5/2}`

Mà `x ∈ Z => x ∈ {0;1}`

Vậy `x ∈ {0;1}`

`c ) 7x + 5 \vdots x - 2`

`=> (7x - 14) + 19 \vdots x - 2`

`=> 19 \vdots x - 2`              ( Vì `7x - 14 \vdots x - 2` )

`=> x - 2 ∈ Ư(19) = {-19 ; -1 ; 1 ; 19}`

`=> x ∈ {-17 ; 1 ; 3 ; 21}`

Vậy ` x ∈ {-17 ; 1 ; 3 ; 21}`

`d ) 3x - 1 \vdots 3x + 2`

`=> (3x + 2) - 3 \vdots 3x + 2`

`=> 3 \vdots 3x + 2`            ( Vì `3x + 2 \vdots 3x + 2` )

`=> 3x + 2 ∈ Ư(3) = {-3 ; -1 ; 1 ;3}`

`=> 3x ∈ {-5 ; -3 ; -1 ; 1}`

`=> x ∈ {-5/3 ; -1 ; -1/3 ; 1/3}`

Mà `x ∈ Z => x = -1`

Vậy `x = -1`

`#dtkc`