Tim x (x-3) + (x-2)+(x-1)+...+10+11=11

2 câu trả lời

Đáp án + Giải thích các bước giải:

$($ $x$ $-$ $3$ $)$ + $($ $x$ $-$ $2$ $)$ + $($ $x$ $-$ $1$ $)$ +.......+ $10$ +$11$ = $11$

$($ $x$ $-$ $3$ $)$ + $($ $x$ $-$ $2$ $)$ + $($ $x$ $-$ $1$ $)$ + ......+ $10$ = $11$ $-$ $11$ = $0$

Gọi số số hạng ở vế trái là $n$ $($ $n$ $\in$ N* $)$ . Ta có:

$\dfrac{(x-3+10).n}{2}$ = $0$

$x$ +  $7$     = $0$

$x$                = $0$ $-$ $7$

$x$                 =   $-7$

Vậy $x$ = $-7$

 

 

`(x-3) + (x-2)+(x-1)+...+10+11=11`

`<=> (x-3) + (x-2)+(x-1)+...+10 = 0`

$\text{Gọi các số hạng từ}$ `x - 3` $\text{đến}$ `10` $\text{là}$ `n`

$\text{ Ta có}$ : $\frac{[ 10 + ( x- 3 )] . n}{2}$ `= 0`

`<=> ( x  + 7 ) . n = 0`

$\text{ Vì}$ `n ne 0` $\text{( n là số số hạng )}$

$\text{ Nên }$ `x + 7 = 0`

              `<=> x = 0 - 7 `

              `<=> x = -7`

$\text{ Vậy}$ `x = -7`