2 câu trả lời
Đáp án:
$x\in \{-1;0;1;2\}.$
Giải thích các bước giải:
$\dfrac{x^2 - x -2}{x^2 - x +2} \in \mathbb{Z}\\ \Leftrightarrow \dfrac{x^2 - x +2-4}{x^2 - x +2} \in \mathbb{Z}\\ \Leftrightarrow 1-\dfrac{4}{x^2 - x +2} \in \mathbb{Z}\\ \Rightarrow \dfrac{4}{x^2 - x +2} \in \mathbb{Z}\\ x \in \mathbb{Z}, \dfrac{4}{x^2 - x +2} \in \mathbb{Z}\\ \Rightarrow 4 \ \vdots \ (x^2 - x +2)\\ Ư(4)=\{\pm 1; \pm 2; \pm 4\}\\ \Rightarrow \left[\begin{array}{l} x^2 - x +2=-4 \\ x^2 - x +2=-2 \\ x^2 - x +2=-1 \\ x^2 - x +2=1 \\ x^2 - x +2=2 \\ x^2 - x +2=4\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} x^2 - x +6=0 \\ x^2 - x +4=0 \\ x^2 - x +3= 0\\ x^2 - x +1=0 \\ x^2 - x=0 \\ x^2 - x -2=0\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} x^2 - x +\dfrac{1}{4}+\dfrac{23}{4}=0 \\ x^2 - x +\dfrac{1}{4}+\dfrac{15}{4}=0 \\ x^2 - x +\dfrac{1}{4}+\dfrac{11}{4}= 0\\ x^2 - x +\dfrac{1}{4}+\dfrac{3}{4}=0 \\ x(x - 1)=0 \\ x^2 -2 x +x-2=0\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} \left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0 (\text{Vô nghiệm}) \\ \left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0 (\text{Vô nghiệm}) \\ \left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0 (\text{Vô nghiệm}) \\ \left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0 (\text{Vô nghiệm})\\ x(x - 1)=0 \\ x^2 -2 x +x-2=0\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} x=0 \\ x=1 \\ x(x -2 ) +x-2=0\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} x=0 \\ x=1 \\ (x+1)(x -2 ) =0\end{array} \right.\\ \Leftrightarrow \left[\begin{array}{l} x=0 \\ x=1 \\ x=-1 \\ x=2\end{array} \right..$
`(x^2-x-2)/(x^2-x+2)`
`=(x^2-x+2-4)/(x^2-x+2)`
`= 1-4/(x^2-x+2)`
Để biểu thức nguyên
`->4\vdots x^2-x+2`
`->x^2-x+2\in Ư(4)={1;-1;2;-2;4;-4}`
Do `x^2-x+2=(x-1/2)^2+1,75>= 1,75∀x`
`->x^2-x+2\in {2;4}`
$\bullet$ `x^2-x+2=2`
`->x^2-x=0`
`->x(x-1)=0`
`->x=0` hoặc `x=1` (Tm)
$\bullet$ `x^2-x+2=4`
`->x^2-x-2=0`
`->x^2-2x+x-2=0`
`->x(x-2)+(x-2)=0`
`->(x+1)(x-2)=0`
`->x=-1` hoặc `x=2` (Tm)
Vậy `x\in {0;±1;2}` để biểu thức nguyên