tìm x biết a, ( $x^{2}$ + 11 ) ( $x^{2}$ - 16 ) =0 b, ( $x^{2}$ - 4 ) ( $x^{2}$ - 9 ) = 0
2 câu trả lời
Answer
`a, (x^2 + 11) . (x^2 - 16) = 0`
Trường hợp `1:`
`x^2 + 11 = 0`
`=> x^2 = 0 - 11`
`=> x^2 = -11` (Vô lý)
Trường hợp `2:`
`x^2 - 16 = 0`
`=> x^2 = 0 + 16`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = +-4`
Vậy `x \in {4 ; -4}`
______________________________
`b, (x^2 - 4) . (x^2 - 9) = 0`
Trường hợp `1:`
`x^2 - 4 = 0`
`=> x^2 = 0 + 4`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Trường hợp `2:`
`x^2 - 9 = 0`
`=> x^2 = 0 + 9`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy `x \in {2 ; -2 ; 3 ; -3}`
`a)(x^2+11)(x^2-16)=0`
`<=>` \(\left[ \begin{array}{l}x^2+11=0\\x^2-16=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x^2=-11(loại)\\x^2=16\end{array} \right.\)
`=>x=±4`
Vậy `x∈{4;-4}`
`b)(x^2-4)(x^2-9)=0`
`<=>` \(\left[ \begin{array}{l}x^2-4=0\\x^2-9=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x^2=4\\x^2=9\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=-2\\x=3\\x=-3\end{array} \right.\)
Vậy `x∈{2;-2;3;-3}`
