Tìm x a/ x( x2 + 4) = 0 b/ (3x – 2)( 4 + 7x) = 0 c/ x2 – 8x = 0
2 câu trả lời
Đáp án:
a, x(x2+4)=0
⇒[x=0x2+4=0
⇒[x=0x2=0−4
⇒[x=0x2=−4(loại)
Vậy x=0
b, (3x–
⇒\left[ \begin{array}{l}3x – 2=0\\4 + 7x = 0\end{array} \right.
⇒\left[ \begin{array}{l}3x=2\\7x=-4\end{array} \right.
⇒\left[ \begin{array}{l}x=\dfrac{2}{3}\\x=\dfrac{-4}{7}\end{array} \right.
Vậy x∈{2/3 ; -4/7}
c, x^2-8x=0
⇒x(x-8)=0
⇒\left[ \begin{array}{l}x=0\\x-8=0\end{array} \right.
⇒\left[ \begin{array}{l}x=0\\x=0+8\end{array} \right.
⇒\left[ \begin{array}{l}x=0\\x=8\end{array} \right.
Vậy x∈{0;8}
#Hien
Giải thích các bước giải:
a, x(x^2 + 4) = 0
-> \left[\begin{matrix} x=0\\ x^2 + 4=0\end{matrix}\right.
-> \left[\begin{matrix} x=0\\ x^2 =-4\text{ loại}\end{matrix}\right.
-> x = 0
Vậy x = 0
b, (3x - 2)(4 + 7x) = 0
-> \left[\begin{matrix} 3x-2=0\\ 4+7x=0\end{matrix}\right.
-> \left[\begin{matrix} x=\frac{2}{3}\\ x=\frac{-4}{7}\end{matrix}\right.
Vậy \left[\begin{matrix} x=\frac{2}{3}\\ x=\frac{-4}{7}\end{matrix}\right.
c, x^2 - 8x = 0
-> x(x - 8) = 0
-> \left[\begin{matrix} x=0\\ x-8=0\end{matrix}\right.
-> \left[\begin{matrix} x=0\\ x=8\end{matrix}\right.
Vậy \left[\begin{matrix} x=0\\ x=8\end{matrix}\right.