Tìm số tự nhiên n sao cho 4n - 5 chia hết cho 2n - 1

2 câu trả lời

Đáp án+Giải thích các bước giải:

Ta có : 4n-52n-1(n

=>4n-(2+3)\vdots 2n-1

=>4n-2-3\vdots 2n-1

=>(4n-2)-3\vdots 2n-1

=>(2.2n-2.1)-3\vdots 2n-1

=>2(2n-1)-3\vdots 2n-1

2(2n-1)\vdots 2n-1

2(2n-1)-3\vdots 2n-1

=>3\vdots 2n-1

=>2n-1∈Ư(3)={+-1;+-3}

=>2n∈{2;0;-2;4}

=>n∈{1;0;-1;2}

n∈NN

=>n∈{1;0;2}

Vậy với 4n-5\vdots 2n-1=>n∈{1;0;2}

Đáp án:

 ta có : 4n - 5 = 4n - 2 - 3
Mà : 4n - 2 \vdots 2n - 1
4n - 5 \vdots 2n - 1 ⇒ 3 \vdots 2n - 1
2n - 1 ∈ Ư ( 3 ) = { 1 ; 3 }
Nếu 2n - 1 = 1n = 0
Nếu 2n - 1 = 3n = 1
vậy n = 0 ; 1

Giải thích các bước giải:

 

Câu hỏi trong lớp Xem thêm