2 câu trả lời
Ta có:
2n²+5n-1 ⋮ 2n-1
⇒4n²+10n-2 ⋮ 2n-1
⇒(4n²-1)+(10n-5)+4 ⋮ 2n-1
⇒4 ⋮ 2n-1
⇒2n-1∈Ư(4)={±1;±2;±4}
⇒n∈{0;1}.
Đáp án:
n∈{0;1}
Giải thích các bước giải:
n∈Z,P=2n2+5n−12n−1P=2n2+5n−12n−1=2n2−n+6n−3+42n−1=n(2n−1)+3(2n−1)+42n−1=n+3+42n−1⇒P∈Z⇔42n−1∈Z⇒4⋮(2n−1)hay(2n−1)∈U(4)={±1;±2;±4}⇒[2n−1=−42n−1=−22n−1=−12n−1=12n−1=22n−1=4⇔[n=−32(ktm)n=−12(ktm)n=0(tm)n=1(tm)n=32(ktm)n=52(ktm)Vayn∈{0;1}.