Tìm giá trị lớn nhất của hàm số y=x/2 + 2/(x-1)

1 câu trả lời

Đáp án:

\(\max y = \frac{5}{2}\) 

Giải thích các bước giải:

\(y = \frac{x}{2} + \frac{2}{{x - 1}} = \frac{{x - 1 + 1}}{2} + \frac{2}{{x - 1}} = \frac{{x - 1}}{2} + \frac{2}{{x - 1}} + \frac{1}{2}\)

Áp dụng bất đẳng thức Cô-si:

\(\begin{array}{l}
\frac{{x - 1}}{2} + \frac{2}{{x - 1}} \ge 2\sqrt {\frac{{x - 1}}{2}.\frac{2}{{x - 1}}} \\
 \leftrightarrow \frac{{x - 1}}{2} + \frac{2}{{x - 1}} + \frac{1}{2} \ge 2 + \frac{1}{2} = \frac{5}{2}\\
 \to \max y = \frac{5}{2} \leftrightarrow \frac{{x - 1}}{2} = \frac{2}{{x - 1}} \leftrightarrow {(x - 1)^2} = 4 \leftrightarrow \left[ \begin{array}{l}
x = 3\\
x =  - 1
\end{array} \right.
\end{array}\)

Câu hỏi trong lớp Xem thêm