2 câu trả lời
Đặt $A=\dfrac{6^{2020}+1}{6^{2021}-5}$
$=>6A=\dfrac{6^{2021}-5+11}{6^{2021}-5}$
$=>6A=1+\dfrac{11}{6^{2021}-5}$
Đặt $B=\dfrac{6^{2021}+1}{6^{2022}-5}$
$=>6B=\dfrac{6^{2022}-5+11}{6^{2022}-5}$
$=>6B=1+\dfrac{11}{6^{2022}-5}$
Do $6^{2021}-5<6^{2022}-5$
$=>1+\dfrac{11}{6^{2021}-5}>1+\dfrac{11}{6^{2022}-5}$
$=>6A>6B$
$=>A>B$
Đáp án:
Đặt `A = ( 6^2020 + 1 ) / ( 6^2021 - 5 )`
`->` `6A = ( 6^2021 + 6 ) / ( 6^2021 - 5 )`
`->` `6A = [ ( 6^2021 - 5 ) + 11 ] / ( 6^2021 - 5 )`
`->` `6A = ( 6^2021 - 5 ) / ( 6^2021 - 5 ) + 11 / ( 6^2021 - 5 )`
`->` `6A = 1 + 11 / ( 6^2021 - 5 )`
Đặt `B = ( 6^2021 + 1 ) / ( 6^2022 - 5 )`
`->` `6B = ( 6^2022 + 6 ) / ( 6^2022 - 5 )`
`->` `6B = [ ( 6^2022 - 5 ) + 11 ] / ( 6^2022 - 5 )`
`->` `6B = ( 6^2022 - 5 ) / ( 6^2022 - 5 ) + 11 / ( 6^2022 - 5 )`
`->` `6B = 1 + 11 / ( 6^2022 - 5 )`
Mà `11 / ( 6^2021 - 5 ) > 1 / ( 6^2022 - 5 )` `(` vì `6^2022 - 5 > 6^2021 - 5` `)`
`->` `1 + 11 / ( 6^2021 - 5 ) > 1 + 1 / ( 6^2022 - 5 )`
`->` `6A > 6B`
`->` `A > B`
Vậy `( 6^2020 +1)/(6^2021 -5) > (6^2021 +1)/(6^2022-5)`.