`P=((2x^3+x^2-x)/(x^3-1)-(x^2+x)/(x^2-1)).(x^2-1)/(2x^2+x-1)+x/(2x-1)`
2 câu trả lời
$P=\left(\dfrac{2x^3+x^2−x}{x^3-1}-\dfrac{x^2+x}{x^2-1}\right).\dfrac{x^2−1}{2x^2+x−1}+\dfrac{x}{2x-1}$ `;(đkxđ:x!=±1;x!=1/2)`
$=\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\:.\:\dfrac{x^2-1}{2x^2+x-1}+\dfrac{x}{2x-1}$
$=\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\dfrac{x-1}{2x-1}+\dfrac{x}{2x-1}$
$=\dfrac{\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\left(x-1\right)}{2x-1}+\dfrac{x}{2x-1}$
$=\dfrac{\dfrac{x^3-2x}{x^2+x+1}}{2x-1}+\dfrac{x}{2x-1}$
$=\dfrac{x^3-2x}{\left(x^2+x+1\right)\left(2x-1\right)}+\dfrac{x}{2x-1}$
$=\dfrac{x^3-2x}{\left(2x-1\right)\left(x^2+x+1\right)}+\dfrac{x\left(x^2+x+1\right)}{\left(2x-1\right)\left(x^2+x+1\right)}$
$=\dfrac{x^3-2x+x\left(x^2+x+1\right)}{\left(2x-1\right)\left(x^2+x+1\right)}$
$=\dfrac{2x^3+x^2-x}{\left(2x-1\right)\left(x^2+x+1\right)}$
$=\dfrac{x\left(x+1\right)}{x^2+x+1}$
$=\dfrac{x^2+x}{x^2+x+1}$ $\text{(tmđk)}$
$\text{Vậy P = }$ $\dfrac{x^2+x}{x^2+x+1}$
Đáp án+Giải thích các bước giải:
Đặt `T=(2x^3 +x^2 -x)/(x^3 1)``-(x^2 +x)/(x^2 -1)` `(đk:xne+-1;xne1/2)`
$T=\left(\dfrac{2x^3+x^2−x}{x^3-1}-\dfrac{x^2+x}{x^2-1}\right).\dfrac{x^2−1}{2x^2+x−1}+\dfrac{x}{2x-1}$
$T=\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\:.\:\dfrac{x^2-1}{2x^2+x-1}+\dfrac{x}{2x-1}$
$T=\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\dfrac{x-1}{2x-1}+\dfrac{x}{2x-1}$ $=\dfrac{\left(\dfrac{2x^3+x^2-x}{x^3-1}-\dfrac{x}{x-1}\right)\left(x-1\right)}{2x-1}+\dfrac{x}{2x-1}$
_______________________________________________________________________________
$P=\dfrac{\dfrac{x^3-2x}{x^2+x+1}}{2x-1}+\dfrac{x}{2x-1}$
$P=\dfrac{x^3-2x}{\left(x^2+x+1\right)\left(2x-1\right)}+\dfrac{x}{2x-1}$
$P=\dfrac{x^3-2x}{\left(2x-1\right)\left(x^2+x+1\right)}+\dfrac{x\left(x^2+x+1\right)}{\left(2x-1\right)\left(x^2+x+1\right)}$ `(đk:xne+-1;xne1/2)`
`P=(x^3 -2x+x(x^2 +x+1))/((2x-1)(x^2 +x+1))`
`P=(2x^3 +x^2 -x)/((2x-1)(x^2 +x+1))`
`P=(x^2 +x)/(x^2 +x+1)`
`P=(x(x+1))/(x^2 +x+1)`
`P=(x^2 +x)/(x^2 +x+1)`
$\text{Vậy P = }$ $\dfrac{x^2+x}{x^2+x+1}$ `(xne+-1;1/2)`