2 câu trả lời
P=(2x3+x2−xx3−1−x2+xx2−1).x2−12x2+x−1+x2x−1 ;(đkxđ:x≠±1;x≠12)
=(2x3+x2−xx3−1−xx−1).x2−12x2+x−1+x2x−1
=(2x3+x2−xx3−1−xx−1)x−12x−1+x2x−1
=(2x3+x2−xx3−1−xx−1)(x−1)2x−1+x2x−1
=x3−2xx2+x+12x−1+x2x−1
=x3−2x(x2+x+1)(2x−1)+x2x−1
=x3−2x(2x−1)(x2+x+1)+x(x2+x+1)(2x−1)(x2+x+1)
=x3−2x+x(x2+x+1)(2x−1)(x2+x+1)
=2x3+x2−x(2x−1)(x2+x+1)
=x(x+1)x2+x+1
=x2+xx2+x+1 (tmđk)
Vậy P = x2+xx2+x+1
Đáp án+Giải thích các bước giải:
Đặt T=2x3+x2-xx31-x2+xx2-1 (đk:x≠±1;x≠12)
T=(2x3+x2−xx3−1−x2+xx2−1).x2−12x2+x−1+x2x−1
T=(2x3+x2−xx3−1−xx−1).x2−12x2+x−1+x2x−1
T=(2x3+x2−xx3−1−xx−1)x−12x−1+x2x−1 =(2x3+x2−xx3−1−xx−1)(x−1)2x−1+x2x−1
_______________________________________________________________________________
P=x3−2xx2+x+12x−1+x2x−1
P=x3−2x(x2+x+1)(2x−1)+x2x−1
P=x3−2x(2x−1)(x2+x+1)+x(x2+x+1)(2x−1)(x2+x+1) (đk:x≠±1;x≠12)
P=x3-2x+x(x2+x+1)(2x-1)(x2+x+1)
P=2x3+x2-x(2x-1)(x2+x+1)
P=x2+xx2+x+1
P=x(x+1)x2+x+1
P=x2+xx2+x+1
Vậy P = x2+xx2+x+1 (x≠±1;12)