2 câu trả lời
Đáp án:
$\text{ta có: ABCD là hình thang cân }$
$\text{$\Rightarrow$ $\widehat{C}$ = $\widehat{D}$}$
$\text{$\widehat{A1}$ = $\widehat{B1}$}$
$\text{$\widehat{C}$ = $\widehat{D}$}$
$\text{$\Rightarrow$ $\triangle$ODC cân tại O}$
$\text{$\Rightarrow$ OD = OC }$
$\text{$\widehat{A1}$ = $\widehat{B1}$}$
$\text{$\Rightarrow$ $180^0$ - $\widehat{A1}$}$
$\text{= $180^0$ - $\widehat{B1}$ }$
$\text{$\Rightarrow$ $\widehat{A2}$ = $\widehat{B2}$}$
$\text{$\Rightarrow$ $\triangle$OAB cân tại O}$
$\text{$\Rightarrow$ OA = OB }$
$\text{$\Rightarrow$ OD - OA = OC - OB }$
$\text{$\Rightarrow$ AD = BC }$
$\text{xét $\triangle$ADC và $\triangle$BCD có:}$
$\begin{cases} AD = BC (ĐL1)\\\widehat{ADC} = \widehat{BCD}\\DC cạnh chung \end{cases}$ $\text{$\Rightarrow$ $\triangle$ADC = $\triangle$BCD (c.g.c)}$
$\text{$\Rightarrow$ AC = BD (2 cạnh tương ứng)}$