Giúp mình với!!!! `\text{Cho abc=2022.Rút gọn:}` `\text{A=}`$\frac{a}{ab+a+2022}+$ $\frac{b}{bc+b+1}+$ $\frac{2022}{ac+2022c+2022}$

2 câu trả lời

Đáp án:

 

Giải thích các bước giải:

$\  A = \dfrac{a}{ab + a + 2022} + \dfrac{b}{bc + b + 1} + \dfrac{2022c}{ac + 2022c + 2022} $

$\ ⇒ A = \dfrac{abc}{(ab + a + 2022)bc} + \dfrac{b}{bc + b + 1} + \dfrac{2022bc}{(ac + 2022c + 2022)b} $

$\ ⇒ A = \dfrac{abc}{abbc + abc + 2022bc} + \dfrac{b}{bc + b + 1} + \dfrac{2022bc}{acb + 2022cb + 2022b} $

Mà $\ abc = 2022 $

$\ ⇒ A = \dfrac{2022}{2022b + 2022 + 2022bc} + \dfrac{b}{bc + b + 1} + \dfrac{2022bc}{2022 + 2022cb + 2022b} $

$\ ⇒ A = \dfrac{2022}{2022(b + 1 + bc)} + \dfrac{b}{bc + b + 1} + \dfrac{2022bc}{2022(1 + cb + b)} $

$\ ⇒ A= \dfrac{1}{b + 1 + bc} + \dfrac{b}{bc + b + 1} + \dfrac{bc}{1 + cb + b} $

$\ ⇒ A = \dfrac{1 + b + bc}{bc + b + 1} $

$\ ⇒ A = 1 $

Vậy $\ A = 1 $

$ĐKXĐ:a,b,c\neq 0$

Sửa: $A=\dfrac{a}{ab+a+2022}+\dfrac{b}{bc+b+1}+\dfrac{2022c}{ac+2022c+2022}$ 

Với $abc=2022$

$A=\dfrac{a}{ab+a+2022}+\dfrac{b}{bc+b+1}+\dfrac{2022c}{ac+2022c+2022}$ 

$A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{ac+abc^2+abc}$ 

$A=\dfrac{abc}{ab^2c+abc+ab^2c^2}+\dfrac{bc}{bc+b+1}+\dfrac{ab^2c}{abc+ab^2c^2+ab^2c}$ 

$A=\dfrac{abc+ab^2c}{ab^2c+abc+ab^2c^2}+\dfrac{bc}{bc+b+1}$ 

$A=\dfrac{abc(b+1)}{abc(b+1+bc)}+\dfrac{bc}{bc+b+1}$ 

$A=\dfrac{b+1}{b+1+bc}+\dfrac{bc}{bc+b+1}$ 

$A=\dfrac{b+1+bc}{b+1+bc}$ 

$A=1$

Vậy $A=1$

Câu hỏi trong lớp Xem thêm
3 lượt xem
2 đáp án
6 giờ trước