1 câu trả lời
Đáp án:
$ x=174\pm 10\sqrt{295}$
Giải thích các bước giải:
ĐKXĐ: $x\ge \dfrac{2}{3}$
Ta có:
$\sqrt{4x-1}+\sqrt{3x-2}=\dfrac{x+1}{5}$
$\rightarrow\sqrt{4x-1}+\sqrt{3x-2}=\dfrac{4x-1-(3x-2)}{5}$
$\rightarrow\sqrt{4x-1}+\sqrt{3x-2}=\dfrac{(\sqrt{4x-1}-\sqrt{3x-2})(\sqrt{4x-1}+\sqrt{3x-2})}{5}$
$\rightarrow 1=\dfrac{\sqrt{4x-1}-\sqrt{3x-2}}{5}$
$\rightarrow \sqrt{4x-1}-\sqrt{3x-2}=5$
$\rightarrow \sqrt{4x-1}=\sqrt{3x-2}+5$
$\rightarrow (\sqrt{4x-1})^2=(\sqrt{3x-2}+5)^2$
$\rightarrow 4x-1=3x-2+10\sqrt{3x-2}+25$
$\rightarrow x-24=10\sqrt{3x-2}$
$\rightarrow (x-24)^2=(10\sqrt{3x-2})^2$
$\rightarrow x^2-48x+24^2=100(3x-2)$
$\rightarrow x^2-348x+776=0$
$\rightarrow x=\dfrac{348\pm 20\sqrt{295}}{2}$
$\rightarrow x=174\pm 10\sqrt{295}$
Câu hỏi trong lớp
Xem thêm