Giải pt: 1/ x(x+11)-3x-33=0 2/ 5x(2x+1)+2x^2+x=0 3/ (x^2-4)-(x-2)=0
2 câu trả lời
Giải thích các bước giải:
`1)`
`x.(x+11)-3x-33=0`
`<=>x.(x+11)-3.(x+11)=0`
`<=>(x-3)(x+11)=0`
`<=>[(x-3=0),(x+11=0):}`
`<=>[(x=3),(x=-11):}`
Vậy `S={3;-11}`
`2)`
`5x.(2x+1)+2x^2+x=0`
`<=>5x.(2x+1)+x.(2x+1)=0`
`<=>(5x+x)(2x+1)=0`
`<=>6x.(2x+1)=0`
`<=>[(x=0),(2x+1=0):}`
`<=>[(x=0),(x=-1/2):}`
Vậy `S={0;-1/2}`
`3)`
`(x^2-4)-(x-2)=0`
`<=>(x-2)(x+2)-(x-2)=0`
`<=>(x-2)(x+2-1)=0`
`<=>(x-2)(x+1)=0`
`<=>[(x-2=0),(x+1=0):}`
`<=>[(x=2),(x=-1):}`
Vậy `S={2;-1}`
Đáp án:
Giải thích các bước giải:
`1) x(x + 11) - 3x - 33 = 0 `
`⇔ x^2 + 11x - 3x - 33 = 0`
`⇔ x^2 + 8x - 33 = 0`
`⇔ (x - 3)(x + 11) = 0`
`⇔` \(\left[ \begin{array}{l}x-3=0\\x+11=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=3\\x=-11\end{array} \right.\)
Vậy `S = {3 ; -11}`
`2) 5x(2x + 1) + 2x^2 + x = 0`
`⇔ 10x^2 + 5x + 2x^2 + x = 0`
`⇔ 12x^2 + 6x = 0`
`⇔ 6(x^2 +x) = 0`
`⇔ 6x(2x + 1) = 0`
`⇔` \(\left[ \begin{array}{l}6x=0\\2x+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=-1/2\end{array} \right.\)
Vậy `S = {0 ; -1/2}`
`3) (x^2 - 4) - (x - 2) = 0`
`⇔ x^2 - 4 - x + 2 = 0`
`⇔ x^2 - x - 2 = 0`
`⇔ (x - 2)(x + 1) = 0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\x+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)
Vậy `S = {2 ; -1}`
