2 câu trả lời
Đáp án:
\[\left[ \begin{array}{l}
x = 4\\
x = - \frac{2}{3}
\end{array} \right.\]
Giải thích các bước giải:
ĐKXĐ: \[D = \left( { - \infty ; + \infty } \right)\]
Ta có:
\[\begin{array}{l}
\sqrt {{x^2} + 6x + 9} = \left| {2x - 1} \right|\\
\Leftrightarrow {\left( {\sqrt {{x^2} + 6x + 9} } \right)^2} = {\left| {2x - 1} \right|^2}\\
\Leftrightarrow {x^2} + 6x + 9 = 4{x^2} - 4x + 1\\
\Leftrightarrow 3{x^2} - 10x - 8 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 4\\
x = - \frac{2}{3}
\end{array} \right.
\end{array}\]
`sqrt(x ²+6x+9) =|2x-1|`
`<=>(sqrt(x ²+6x+9))^2 =(|2x-1|)^2`
`<=>x ²+6x+9 =(2x-1)^2`
`<=>(x +3)^2 -(2x-1)^2=0`
`<=>(x +3-2x+1)(x+3+2x-1)=0`
`<=>(4-x)(3x+2)=0`
`<=>`\(\left[ \begin{array}{l}4-x=0\\3x+2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=4\\x=\cfrac{-2}{3}\end{array} \right.\)
`<=>S={4;(-2)/3}`