Giải h phương trình x2-5xy+y2=7 2x+y=1

1 câu trả lời

Đáp án:$\left( {x;y} \right) = \left\{ {\left( {1; - 1} \right);\left( { - \frac{2}{5};\frac{9}{5}} \right)} \right\}$

 

Giải thích các bước giải:

$\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} - 5xy + {y^2} = 7\left( 1 \right)\\
2x + y = 1
\end{array} \right.\\
 \Rightarrow y = 1 - 2x \Rightarrow \,thay\,vao\left( 1 \right)\,:\\
{x^2} - 5x.\left( {1 - 2x} \right) + {\left( {1 - 2x} \right)^2} = 7\\
 \Rightarrow {x^2} - 5x + 10{x^2} + 4{x^2} - 4x + 1 - 7 = 0\\
 \Rightarrow 15{x^2} - 9x - 6 = 0\\
 \Rightarrow \left[ \begin{array}{l}
x = 1 \Rightarrow y = 1 - 2x =  - 1\\
x =  - \frac{2}{5} \Rightarrow y = 1 - 2x = \frac{9}{5}
\end{array} \right.\\
 \Rightarrow \left( {x;y} \right) = \left\{ {\left( {1; - 1} \right);\left( { - \frac{2}{5};\frac{9}{5}} \right)} \right\}
\end{array}$

Câu hỏi trong lớp Xem thêm