Giải các phương trình: a. 2x^4 - 3x^2 +1=0 b.|3x-2|=2x+3

2 câu trả lời

Đáp án:

$\begin{array}{l}
a)\,\,\,S = \left\{ { \pm 1;\,\, \pm \frac{1}{{\sqrt 2 }}} \right\}.\\
b)\,\,S = \left\{ { - \frac{1}{5};\,\,5} \right\}.
\end{array}$

Giải thích các bước giải:

\(a)\,\,2{x^4} - 3{x^2} + 1 = 0\,\,\,\left( * \right)\)

Đặt\({x^2} = t\,\,\left( {t \ge 0} \right)\)

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow 2{t^2} - 3t + 1 = 0\\ \Leftrightarrow \left( {t - 1} \right)\left( {2t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = 0\\2t - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\left( {tm} \right)\\t = \frac{1}{2}\,\,\,\left( {tm} \right)\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{x^2} = 1\\{x^2} = \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  \pm 1\\x =  \pm \frac{1}{{\sqrt 2 }}\end{array} \right..\end{array}\)

Vậy phương trình có tập nghiệm:\(S = \left\{ { \pm 1;\,\, \pm \frac{1}{{\sqrt 2 }}} \right\}.\)

\(\begin{array}{l}b)\,\,\left| {3x - 2} \right| = 2x + 3 \Leftrightarrow \left[ \begin{array}{l}3x - 2 = 2x + 3\\3x - 2 =  - 2x - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 5\\5x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x =  - \frac{1}{5}\end{array} \right..\end{array}\)

Vậy phương trình có tập nghiệm là: \(S = \left\{ { - \frac{1}{5};\,\,5} \right\}.\)  

Đáp án:

 

Giải thích các bước giải:

 Đặt t=x^2 phương trình trở thành 2t^2-3t+1=0 (t>=0) giải phương trình tìm đc t. Thay vào tìm đc x

Câu hỏi trong lớp Xem thêm